• http://www.onicesroofing.com/Are Composition Shingles and Asphalt Shingles the Same Thing? The roofing industry is full of different names and terms that are hard to understand as a homeowner. This can be confusing and often frustrating. Especially when different roofing contractors use different terms to mean the same thing. This brings us to a commonly asked question, “Are composition shingles and asphalt shingles the same thing?” For over 30 years, the team at Bill Ragan Roofing has helped homeowners understand the lingo, terminology, and other aspects of the roofing industry. Now we'll be doing the same thing for you. To start this article off, we'll clarify if composition shingles and asphalt shingles are the same. After that, we'll give you 3 things that every homeowner needs to know about a composition shingle roof. Are composition shingles and asphalt shingles the same thing? Yes, composition shingles and asphalt shingles are the same thing. It's simply just another term the roofing industry uses for asphalt shingles. The term “composition” comes from the fact that asphalt shingles are a composite of man-made materials. These materials consist of fiberglass, tar, and granules put on a fiberglass mat to make a shingle. Insurance companies also call them composition shingles on claims for roof damage. So, if you see “composition” on your insurance claim, there's no reason to panic. At the end of the day, you might hear different roofing contractors use one or the other. But the majority of the roofing industry uses asphalt shingles. Things to know about composition (asphalt) shingles Now you know that composition shingles and asphalt shingles are the same thing. After learning this, you're ready to learn the 3 main things every homeowner needs to know about composition shingles. 1. The 3 types of composition shingles There are 3 types of composition (asphalt) shingles: 3-tab, architectural (dimensional or laminate), and luxury (shake look or slate look). All 3 shingles have different looks to fit the style you're looking for and your budget. 3-tab shingles lay flat and get their name from the 3 tabs on each shingle strip. Architectural (dimensional) shingles have a random pattern and shadow lines to give your roof more dimension. Some even simulate the look of a wood shake roof. Luxury (shake roof and slate roof) shingles are larger and thicker than the other shingles. Most luxury shingles are designed to look like slate tiles, hence the name slate look. 3-tab shingles used to dominate the roofing industry, but now architectural shingles are the most common type installed on roofs today. Luxury shingles are as heavily marketed as architectural shingles, but they're around double the price. No matter your budget or the look you want, you'll be able to find an asphalt shingle that fits your needs. 2. The materials and components that make up a composition shingle roof While choosing which shingle you want is the fun part; your composition roof system is much more than the shingles you see from the street. It's a combination of key roofing components and materials that come together to form a complete roof system. These other roofing materials and components are just as important as the composition shingles themselves. The main materials and components that make up a composition roof are: Roof decking Roof flashing Underlayment Drip edge Ice and water shield Shingles Ridge capping Roof vents Pipe boots Flashing These materials come together to make a complete roof system that protects you and your family. To learn more about the functions of each roofing component and material, click on the hyperlinks attached to the materials or check out the 9 materials included in your roof replacement. 3. The lifespan of composition shingle roof A composition roof's lifespan is the number of leak-free years you get out of it. Remember the 3 types of composition shingles we discussed earlier? Well, each comes with a specified lifespan from the manufacturer. 3-tab shingles can last up to 25 years and live the shortest of the three types of composition shingles. On the other hand, both architectural and luxury shingles have a lifespan of around 30 years. But the luxury style is thicker and has the possibility to go over 30 years and up to 50 under the right conditions. As long as the composition shingles are properly installed and your attic is adequately ventilated, they'll get really close to the lifespans above. However, other factors impact how long a composition roof ultimately lasts. How much does a composition (asphalt) shingle roof cost? Now you know 3 things every homeowner needs to know about a composition roof. However, there's still one more crucial thing you need to learn. This, of course, is how much a composition shingle roof costs. The problem is, the roofing industry avoids talking about pricing or anything else relating to cost. But here at Bill Ragan Roofing, we do things differently. That's why we wrote another article that gives you the cost of a composition (asphalt) roof and the factors that impact the price of a replacement. The team at Bill Ragan Roofing has provided homeowners in Nashville and surrounding areas with high-quality asphalt roofing services since 1990. Whether you need repairs or a full roof replacement, you can count on our workmanship backed by a lifetime warranty to take care of your roof for decades to come. To learn what you can expect to pay for a composition roof replacement, check out How Much a New Asphalt Roof Costs: Pricing, Factors & Considerations. What Are Laminated Shingles? You've just gotten off the phone with another Marietta roofing contractor and he only seemed interested in installing laminated shingles on your roof. He's told you that they are his most popular seller, but does that mean they are the best shingle for your roof? Are laminated shingles really that great, or is it just sales hype? 3-TAB AND LAMINATED SHINGLES – WHAT A MARIETTA ROOFING COMPANY KNOWS ABOUT HOW THEY ARE MADE The difference between laminated and 3-tab shingles is really quite simple. They are both made from the same basic components, but one just uses more of them. The laminated shingle is essentially a beefed-up version of a 3-tab shingle, so it makes some sense to discuss the simpler 3-tab shingle, first. Twenty or so years ago, 3-tab shingles were used almost exclusively to cover residential roofs. Today's 3-tab shingle has not changed much, in terms of basic construction and size. A 1-ft. tall X 3-ft. wide shingle slab is cut with slots at one end to create three tabs, each about 5-in. tall X 12-in. wide. What results is the well-known and widely used “3-tab shingle.” The shingles are overlapped and nailed in place during installation. After a roof is finished the tabs are the only visible part of each shingle. Those unfamiliar with roofing often assume each tab is an individual shingle. Of course, now you know what every professional Marietta roofing contractor knows. Each visible “shingle” is, in fact, one of the tabs in a 3-tab shingle. As suggested earlier, laminated shingles are actually an enhanced, stronger version of a standard 3-tab shingle. Unlike a 3-tab shingle, a laminated shingle has an extra layer under its lower half. This gives the tabs on a laminated shingle a thickness that is twice as deep as it would be otherwise. But why is this thickness necessary? The primary goal of a laminated shingle is to provide a more natural and deeper look than that offered by a conventional 3-tab shingle. That is why laminated shingles are sometimes called architectural shingles. A laminated shingle creates depth by featuring tabs of varying widths that are separated by large, randomly spaced gaps. The large spaces between the cut tabs highlights the thickness of the tabs, creating a wonderful, visually appealing effect of depth. Some laminated shingles employ different shades, tones and even contrasting colors to create an even more distinctive, yet natural appearance. 3-Tab And Laminated Shingles – A Performance Comparison That Every Marietta Roofing Contractor Understands The next questions to ask is, how does the extra material used in a laminated shingle translate into performance? By virtue of their heavier construction, laminated shingles are able to last longer than 3-tab shingles. With more protective asphalt, granules and fiberglass per square foot, laminated shingles can resist sun, heat, impact and water damage more effectively and for a longer time than 3-tab shingles can. This is reflected, in general, by longer warranty times and higher wind ratings for laminated shingles. A side-by-side comparison of 3-tab and laminated shingles is presented below. Note that the warranty information provided is generic in nature and provided for reference, only. You should confirm product specific shingle warranty details with your Marietta roofing contractor before you make any purchasing decisions. How Long Can You Expect Your Asphalt Roof to Last? When investing in a new roof, you're expecting to get as many years out of it as possible. This is especially true for an asphalt roof. One of the most crucial questions customers ask is how long their asphalt roof will last. While a roofing contractor can say 25 or 30 years, you're probably wondering if it'll actually last that long. Luckily, we're here to help you understand the lifespan of your asphalt roof. The team at Bill Ragan Roofing has been installing asphalt roofs in the Nashville area since 1990. We know what it takes to maximize the life of your roof with our workmanship and attention to detail. The truth is, you should get pretty close to the manufacturer's lifespan of your roofing materials. But there are a number of factors that ultimately determine how much life you'll get out of your asphalt roof. By the end of this article, you'll know how long your asphalt roof should last and the factors that affect its lifespan. And to help save time and make your research a little easier, grab the Asphalt Roof Replacement Cheat Sheet at the very end. How long will your asphalt roof last? There are three types of asphalt shingles, 3-tab, dimensional, and luxury. But for this article, we're going to use the two most common asphalt shingles, 3-tab and dimensional, as examples. 3-tab shingles generally come with a 25-year manufacturer warranty. Dimensional shingles come with a 30-year manufacturer warranty. Vented properly and installed correctly, you should get around 80-85% of the life span out of an asphalt roof. That means you can expect to get about 20-22 years out of your 3-tab shingle roof and 25-28 years out of your dimensional shingles. posted an update 1년, 4개월전

    http://www.sun-trine.com/Use And Care Of Reagent Bottles
    Many of our kits include reagent bottles for steeping and storing bitters. This type of bottle has been used to store chemicals for at least 150 years, though the idea for the ground glass stopper dates back to the late 1700s. The combination of glass bottle and stopper makes the container very resistant to chemical corrosion with a few exceptions. Very strong alkali should not be stored in these bottles because the alkali can cause the stopper to corrode and fuse to the neck of the bottle. Also, hydrofluoric acid should never be stored in glass containers because it will actually dissolve the glass.

    Reagent bottles that have been used in a laboratory or otherwise used to store chemicals should not be used for storing food or drinks. The bottles in our kits are always brand new but they may contain a white residue from the process of grinding the neck and stopper so they should always be washed before use.

    Bottles typically come in two colors: clear and amber. Clear bottles are ideal for displaying items and amber bottles protect the contents from light. Sizes range from 30 ml (1 ounce) up to 20000 ml (about 5 gallons) and the larger ones may be used to store preserved biological specimens in the lab. The large ones also make excellent terrariums or miniature aquariums.

    Because glass expands and contracts with changes in temperature, care must be taken when reagent bottles are heated and cooled. When a reagent bottle is heated, the neck expands, allowing the tapered stopper to drop farther into the bottle. When the bottle is then cooled, the neck shrinks around the stopper, locking it in place. The rough surface of the neck and stopper prevents the stopper from sliding up as the neck shrinks. With a large enough change in temperature, the neck of the bottle can actually crack if it shrinks too tight around the stopper. Additionally, if hot liquid is poured into the bottle, the liquid will form an air-tight seal between the stopper and bottle, and as the liquid and steam in the bottle cool and shrink, the stopper will be pulled down into the bottle neck. This is the same principle that makes the center of a canning jar lid pop down until the seal is released.

    Things You Should Know Before Using Bottles
    When pouring hot liquids into a reagent bottle or placing the bottle in the refrigerator, the lid should be propped open with a toothpick or other small object until the liquid and bottle are cool. Another way to seal the bottle while preventing the lid from sticking is to place a sheet of plastic wrap loosely over the bottle neck before pushing the stopper down.

    If the lid of your bottle does get stuck, there are ways to rescue it without breaking it. (You may want to wear leather gloves while trying to remove a stuck stopper in case the bottle or stopper breaks.) Stuck stoppers often cause small chips around the mouth of the bottle. Use a small piece of fine grit wet sandpaper to smooth the edges of the chips.
    Grasp the bottle in both hands with your fingers around the bottle and your thumbs against the edge of the stopper. Push against the edge of the stopper. Rotate the bottle and try again until you feel a small pop. It may take several rotations and “pops” before the lid is loose enough to remove.

    If the first step didn’t work, try running the bottle under warm water while keeping the lid dry. The greater the temperature difference between the bottle and stopper, the more likely the stopper will come loose. Once the bottle is warm, dry it and repeat the steps above.

    If that still doesn’t work, place a slightly crumpled piece of foil on a rack in the middle of an oven. The foil should be about 1.5 times the height of the bottle or larger. Lay the bottle on its side on the foil with enough extra foil under the top of the bottle to keep the lid from hitting the oven rack if it falls out. Heat the bottle gently by starting at 250°. Increase the temperature by 10-20° every 15 minutes until the stopper loosens. You can pull the bottle out and try step one wearing heat-resistant gloves but the lid should eventually get loose enough to fall out on its own.

    If all of that fails, let the bottle slowly cool to room temperature. Wearing a heat-resistant glove and safety glasses, hold the bottle upside down over a folded towel, and use a torch to heat the neck of the bottle. The lid should eventually fall out onto the towel. This rapid heating can cause the bottle to crack so use caution.

    If none of those things work and you absolutely must get the contents out of the bottle, use a chisel and hammer to gently chip away the neck of the bottle around the stopper. If the contents you are rescuing are your bitters, filter them thoroughly to remove any glass slivers.
    Chemical Labels
    Reagent bottles are labeled using a system which includes a “hybrid” hazard labeling system.

    When reagents arrive from the manufacturer, the labels are intended to communicate the hazards and precautions of handling a particular chemical to the researchers and professionals who will be using the chemical. Much of this information is also included in compliance with HCS legislation, to protect the manufacturer from liability for any accidents which occur during handling of the chemical.

    Unfortunately for students in undergraduate-level teaching labs, this information carries little meaning, or is simply not interpreted correctly because the average undergrad hasn’t had the training and education to fully understand the information presented. Therefore the CS uses a simpler labeling system for the reagent bottles used by the students in the teaching labs. This system is a “hybrid” because it presents important information in a simpler and clearer format which is easy to understand, and also incorporates elements of both the NFPA and HMIS hazard labeling systems.

    The label consists of several parts:

    Chemical name: Lists the name of the chemical. Many chemicals have several synonyms due to various systems of nomenclature. This can get a little confusing, so the most commonly-used name (according to the texts used for the teaching labs, but more often the name recommended by the IUPAC nomenclature system) will appear here.

    Chemical synonyms: Lists other names of the chemical, if there are any. For instance, “rock salt” would be listed as a synonym of the chemical “sodium chloride.”

    Hazard rating: The hazard rating of the chemical. These ratings are usually published by the NFPA as Standards (NFPA 49 and 325, for example). If a chemical has no published NFPA rating, then HMIS/HMIG ratings are used instead, based on manufacturer information. A blank hazard rating on a chemical does not mean the chemical is harmless! On the contrary; it means that the chemical has not been rated by the NFPA or is not contained in any other published source of hazard ratings. Chemicals with blank hazard ratings should be treated as dangerous. Reagents which are not pure chemicals (for instance, aqueous salt solutions) will not include a hazard rating diamond on their labels.

    Specific hazards: Based on the hazard rating, words appearing here draw your attention to specific hazards of the chemical or reagent. CORROSIVE! or POISON! will appear if the health (blue) rating is 3 or greater. FLAMMABLE! will appear if the flammability (red) rating is 3 or greater. EXPLOSIVE! or EXTREMELY REACTIVE! will appear if the reactivity (yellow) rating is 3 or greater, and WATER-REACTIVE! will appear if the chemical or reagent is water-reactive. In cases where the hazard rating is unknown, specific hazards may still be known and will be identified.

    Guide to Laboratory Bottles and Jars
    Laboratory bottles and jars

    Laboratory bottles and jars hold and store chemicals in a variety of different types of laboratories. They come in a wide range of shapes and sizes for various applications, and can be made of glass or plastic.

    Types of Bottles and Jars

    The chart below lists the different types and shapes of bottles and jars as well as a description and their application.

    Bottle Type/Shape Description
    Narrow Mouth Narrow-mouth bottles feature a smaller opening that is designed for pouring liquids and can be used for storing or shipping liquids.
    Wide Mouth Wide-mouth bottles feature a larger opening for easy filling of various types of liquids and solids.
    Sampling Sampling bottles and jars have straight sides and wide mouths for easy filling and removal of samples. Environmental sampling jars can resist breakage, making them good for collecting, transporting and storing of samples for later analysis.
    Square Square bottles can be easily packed next to each other and allow for more bottles to be stored on shelves or cabinets.
    Wash Wash bottles shoot a jet of water out of a spout on the side of the bottle. Use them to rinse chemicals and materials from other labware. Some wash bottles have a chemical name and formula printed on them to help prevent cross contamination with other chemicals.
    Clear vs. Amber Bottles and Jars

    While clear plastic and glass bottles and jars provide maximum transparency of their contents, amber bottles and jars protect light-sensitive products from UV rays that could alter their contents. Amber bottles and jars come in a variety of sizes and materials.

    Glass Bottles and Jars

    Below are the two most common types of glass used for bottles and jars, their application and temperature range. Type I Borosilicate glass contains at least 5% boric oxide making it more temperature and chemical resistant than Type III Soda Lime Glass.

    Both types of glass bottles and jars can be safety coated with a specialized plastic called plastisol that fits tightly to the glass bottle when cooled to provide protection from injuries and leaks should the bottle or jar break.

    Material Application Temperature Range
    Type I Borosilicate Withstands harsher chemical and thermal conditions than bottles made of soda lime. Bottles and jars made from this glass can go from freezing to hot temperatures or vice versa without breaking. –70°C to 230°C
    Type III Soda Lime Offers some chemical resistance and a smooth surface for easy cleaning. Use for dry powers, buffers or low-heat applications. 0°C to 100°C
    What are the Properties of Amber Glass Bottles for Cosmetics?
    When you’re trying to decide on the right kind of packaging and bottles for your product, it’s important to know exactly what you’re getting, and what to expect. With so many options and varieties to choose from, knowing the type of cosmetic bottle that will fit your needs (and the needs of your customers) is crucial.

    Amber bottles have seen an increase in popularity in recent years a more minimalistic/ natural approach is trending cosmetics, with consumers looking to decrease their carbon footprint and develop a more sustainable lifestyle.

    So, what can you expect from amber bottles? Let’s answer a few common questions so you can make a more informed decision on whether you should use them for your product(s).